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ABSTRACT

Initial  condition  and  model  errors  both  contribute  to  the  loss  of  atmospheric  predictability.  However,  it  remains
debatable which type of error has the larger impact on the prediction lead time of specific states. In this study, we perform a
theoretical  study  to  investigate  the  relative  effects  of  initial  condition  and  model  errors  on  local  prediction  lead  time  of
given states in the Lorenz model. Using the backward nonlinear local Lyapunov exponent method, the prediction lead time,
also  called  local  backward  predictability  limit  (LBPL),  of  given  states  induced  by  the  two  types  of  errors  can  be
quantitatively estimated. Results show that the structure of the Lorenz attractor leads to a layered distribution of LBPLs of
states. On an individual circular orbit, the LBPLs are roughly the same, whereas they are different on different orbits. The
spatial  distributions  of  LBPLs  show  that  the  relative  effects  of  initial  condition  and  model  errors  on  local  backward
predictability depend on the locations of given states on the dynamical trajectory and the error magnitudes. When the error
magnitude is fixed, the differences between the LBPLs vary with the locations of given states. The larger differences are
mainly located on the inner trajectories of regimes. When the error magnitudes are different, the dissimilarities in LBPLs
are diverse for the same given state.

Key words: Initial condition, model errors, error magnitude, error location, LBPL

Citation: Li,  X.,  J.  Feng,  R.  Q.  Ding,  and  J.  P.  Li,  2021:  Application  of  backward  nonlinear  local  Lyapunov  exponent
method to assessing the relative impacts of initial condition and model errors on local backward predictability. Adv. Atmos.
Sci., 38(9), 1486−1496, https://doi.org/10.1007/s00376-021-0434-2.

Article Highlights:

•  This  study introduces  a  new method to  quantify  predictabilities  of  LBPL of  specific  states  with  the  presence of  initial
condition or model errors.

•  The  specific  structure  of  the  Lorenz  attractor  leads  to  a  layered  distribution  of  local  backward  predictability  limits
induced by the initial condition or model errors.

•  The relative  impacts  of  initial  condition  and  model  errors  on  local  backward  predictability  depend  on  the  locations  of
given states on the dynamical trajectory and the error magnitudes.

 

 
  

1.    Introduction

In weather forecasting, two main types of errors affect

the accuracy of forecast results: initial condition errors and
model errors. The initial condition errors are the difference
between  the  true  and  observed  values  of  atmospheric  vari-
ables.  They  are  unavoidable,  no  matter  how  advanced  the
observation networks  or  data  assimilation methods.  In  cur-
rent  operational  forecasting,  numerical  models  are  widely
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used to forecast future states. However, the simplified atmo-
spheric  equations,  coarse  resolution  and  parameterization
schemes introduce model errors in numerical weather predic-
tion.  Apart  from the initial  condition and model  errors,  the
numerical  schemes  which  solve  the  numerical  models  will
also introduce uncertainty, resulting in loss of predictability
(e.g. Gilson et al., 1988; Li et al., 2000; Berner et al., 2009).
Lorenz (1963) pointed out that the chaotic nature of the atmo-
sphere  would  make  slightly  differing  initial  states  evolve
very  differently  in  phase  space  over  time.  Given  that  the
two  types  of  errors  can  be  never  eliminated,  the  atmo-
spheric predictability has an upper limit. Lorenz (1975) classi-
fied the problems of atmospheric predictability into two cat-
egories. The first predictability is associated with the initial
condition errors, while the second predictability is related to
the  model  errors.  Researchers  have  also  proposed  several
methods to quantitatively estimate atmospheric predictabil-
ity.  Early  studies  attempted  to  estimate  the  predictability
limit by computing the doubling time of small errors (Leith,
1965; Mintz, 1968; Smagorinsky, 1969). Charney (1966) sum-
marized previous studies and demonstrated that the average
doubling time of small errors is 5 days. The Lyapunov expo-
nent  (LE)  can  characterize  the  average  growth  rate  of
chaotic systems, and may be used to quantify atmospheric pre-
dictability.  However,  the  LE  is  almost  constant  on  the
attractor (Oseledec, 1968) while predictability is a local prop-
erty  in  phase  space  (Trevisan  and  Legnani,  1995).  There-
fore, the LE is not suitable for measuring local predictabil-
ity.  Subsequently,  the  local  LE  was  proposed  to  quantify
atmospheric  predictability  (Nese,  1989; Yoden  and
Nomura, 1993). The local LE method is valid only if the ini-
tial  error  is  infinitesimal.  Hence, Ding  and  Li  (2007) and
Ding  et  al.  (2008) proposed  the  nonlinear  local  Lyapunov
exponent (NLLE) method to study the nonlinear growth of
finite error size in a time interval. Without linearizing the gov-
erning  equations,  they  integrated  the  true  state  and  per-
turbed state to study the error growth. Therefore, the NLLE
method  remains  applicable  even  when  the  initial  error
grows  to  a  finite  size.  As  an  alternative  to  the  NLLE
method, Mu et  al.  (2003) proposed  the  conditional  nonlin-
ear  optimal  perturbation  (CNOP)  method  to  study  atmo-
spheric predictability. The CNOP method takes into account
the  nonlinearity  of  the  atmosphere  and  can  also  be  used
when the initial error grows to a finite size (Mu and Duan,
2003; Duan  et  al.,  2004; Mu  and  Zhang,  2006; Duan  and
Mu, 2009).  The shadowing property reflects the approxim-
ate evolution of a computed trajectory compared to the true
one  (Sanz-Serna  and  Larsson,  1993; Vallejo  and  Sanjuán,
2013). Therefore, the shadowing time can indicate the predict-
ability. Based on the distributions of finite-time LEs, the shad-
owing time can be calculated. That is, the predictability may
be  quantified.  Recently, Vallejo  and  Sanjuán  (2015) intro-
duced the predictability index to indicate the predictability.
The  predictability  index  is  also  derived  from  the  distribu-
tions of finite-time LEs. Since the finite-time LEs are com-
puted  by  using  the  tangent  linear  equations  (Yoden  and
Nomura, 1993; Ding and Li, 2007), the two methods above

are  different  from the  NLLE method.  More  recently, Daza
et al. (2016) has proposed basin entropy to quantify the uncer-
tainties in dynamical  systems.  Basin entropy has proven to
be an effective method for  study of  the mechanism of  loss
of predictability in several paradigmatic models. It is essen-
tial  to  introduce  this  method  into  the  predictability  of
extreme weather events in the future.

These methods allow us to estimate the prediction time
within  which  weather  forecasts  are  credible.  However,  the
general  public  and policymakers  are  often  more  concerned
with  the  prediction  lead  time  of  specific  weather  events
such as extreme heat waves or heavy rainfall that can cause
socioeconomic  damage.  The  predictability  of  extreme
weather  events  is  different  from  that  of  normal  weather
events. To distinguish the predictability of specific weather
events from that of normal weather events, Li et al.  (2019)
proposed  two  new  notions  of  predictability:  the  local  for-
ward and local backward predictabilities. The local forward
predictability  is  associated with the prediction time of  nor-
mal weather events, while the local backward predictability
is  concerned  with  the  maximum  prediction  lead  time  of
extreme  weather  events.  In  current  operational  forecasts,
owing to some uncertainties present in the observations and
models, forecasts in the first few days are sufficiently accur-
ate to inform the public well. Questions arise as to whether
the  accurate  forecast  time  can  be  extended,  and  how  to
determine the upper predictability limit  from initial  normal
events, but these questions are unsolved. Though two weeks
are widely recognized as  the upper  limit,  this  problem still
needs  more  intensive  examination.  In  order  to  address  this
problem, Li et al. (2019) introduced the notion of local for-
ward  predictability  to  study  the  upper  predictability  limit
from  initial  normal  states.  Since  extreme  weather  events
occur  at  a  low  frequency,  their  predictabilities  are  unique
and differ  from those of normal weather events (Mu et  al.,
2002; Chou, 2011). It is more difficult to estimate the predict-
ability of extreme weather events. In order to estimate the pre-
dictability of extreme weather events, Li et al. (2019) indic-
ated that the growing forecast errors resulting in such events
should be analyzed, and proposed the notion of local back-
ward  predictability  to  study  these  kinds  of  events.  Hence,
the forward and backward predictabilities are focused on dif-
ferent kinds of weather events. Li et al. (2020b) studied the
relative roles of initial condition and model errors in local for-
ward predictability in the Lorenz model and found that the ini-
tial condition errors are more dominant in the forward predict-
ability  than  model  errors,  consistent  with  previous  studies
(e.g. Downton  and  Bell,  1988; Lorenz,  1989; Richardson,
1998).  The  complexity  of  the  predictability  of  specific
weather events has meant that there are very few relevant stud-
ies  on  the  relative  roles  of  the  two  types  of  errors  in  local
backward  predictability.  The  occurrence  of  specific  states,
especially extreme states, has a greater impact on human soci-
ety, so it is necessary to study the relative effects of the two
types of errors on the local backward predictability of spe-
cific  states,  which  may  provide  theoretical  guidance  for
improving forecast skill. Ding and Li (2007) introduced the
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NLLE  method  to  quantify  the  maximum  prediction  time
from  a  random  initial  state.  However,  this  technique  can’t
quantify how much time a specific state can be predicted in
advance.  In  order  to  address  this  problem, Li  et  al.  (2019)
developed  the  backward  nonlinear  local  Lyapunov  expo-
nent (BNLLE) method on the basis of the NLLE technique.
By calculating the time of forecast errors growing to satura-
tion level from the corresponding initial state to the specific
state, the local predictability of the specific state can be quan-
tified. Therefore, the NLLE and BNLLE techniques have dif-
ferent research objects. The NLLE method has been widely
used in the atmospheric predictability or related fields (e.g.,
Li  and  Ding,  2013; He  et  al.,  2021).  However,  since  the
BNLLE method was introduced, it has just been applied to a
single  study  comparing  the  predictabilities  of  warm  and
cold events (Li et al., 2020a). In the present work, we will per-
form a theoretical study to investigate the relative effects of
initial condition and model errors on the local backward pre-
dictability  of  specific  states  based  on  the  BNLLE  method.
The BNLLE method is used to quantify the local backward
predictability limit (LBPL) of a specific state. Therefore, the
relative effects of initial condition and model errors on local
backward  predictability  can  be  quantitatively  estimated  by
comparing  the  difference  between  the  LBPLs.  The
remainder  of  this  paper  is  organized  as  follows.  Section  2
introduces the BNLLE method and Lorenz model. The res-
ults of quantitative comparisons of the relative effects of ini-
tial condition and model errors on local backward predictabil-
ity are presented in section 3. Finally, a discussion and conclu-
sions are given in section 4. 

2.    Model and method
 

2.1.    Model description

In  this  work,  the  Lorenz  model  (1963,  hereafter
referred to as Lorenz63 model) is used to investigate the relat-
ive impacts of two types of uncertainties on local backward
predictability.  The  Lorenz63  model  is  a  conceptual  model
of the real atmosphere and has been widely used in studies
of  atmospheric  predictability  (e.g. Palmer,  1993; Evans  et
al., 2004; He et al., 2006, 2008; Feng et al., 2014; Li et al.,
2020a).  The  detailed  description  of  model  setup  parallels
that of Li et al. (2020b). 

2.2.    BNLLE method

Ding and Li (2007) proposed the NLLE method to quant-
itatively estimate atmospheric predictability. Figure 1 shows
the mean local relative error growth of initial errors as a func-
tion of time for different error magnitudes in the Lorenz63
model. The initial errors grow with a regularly oscillating pat-
tern at the early stage. After that,  the errors reach a satura-
tion level and cease to grow. For different magnitudes of ini-
tial error, the time to reach saturation is different. Smaller ini-
tial errors take more time to reach saturation. Before the satur-
ation stage, the errors grow in the linear regime. When the
errors are in the period of saturation, the nonlinearity domin-

ates the error growth (e.g. Lacarra and Talagrand, 1988; Far-
rell, 1990; Lorenz, 2005). Therefore, the local forward predict-
ability  limit  of  a  single  state  in  phase  space  can  be  meas-
ured as the time when the forecast error exceeds 95% of the
saturation value (Li et al., 2019).

δ (t0)
x (t0)

Using the NLLE algorithm, we can obtain the local for-
ward predictability limit of any initial state. However, we can-
not  estimate  the  LBPL  of  a  given  state,  especially  for  the
extreme states that are of greater interest. On the basis of the
NLLE algorithm, Li  et  al.  (2019) introduced  an  algorithm,
BNLLE, for estimating the LBPL of a given state. In an n-
dimensional  system,  the  growth  of  small  errors  per-
turbed on the initial state  can be expressed by 

δ (t0+τ) = η (x (t0) ,δ (t0) , τ)δ (t0) , (1)

η (x (t0) ,δ (t0) , τ)
δ (t0+τ) t0+τ

where  is  the  nonlinear  error  propagator,
and  the  is  the  time-dependent  error  at  time .
The  average  growth  rate  of  errors,  also  called  the  NLLE
(Ding and Li, 2007) can be described by 

λ (x (t0) ,δ (t0) , τ) =
1
τ

ln
∥δ(t0+τ)∥
∥δ(t0)∥ , (2)

λ (x (t0) ,δ (t0) , τ)

x (t0)

x (t0)
x (t0)

where  represents  the  average  growth  rate
of  errors.  Therefore,  the  average  growth  of  forecast  errors
varying with time can be obtained (shown in Fig. 1). Based
on the saturation time of forecast errors, we can estimate the
local  forward  predictability  limit  of  state . Li  et  al.
(2019) pointed out that a specific state has a corresponding
initial  state.  In  order  to  estimate  the  LBPL  of  a  specific
state,  the  corresponding  initial  state  must  be  found  first.
Once the corresponding initial state is determined, then the
time length between the corresponding initial state and spe-
cific state is defined as the LBPL of the specific state. Li et
al.  (2019, 2020a) indicated  that  if  numerous  infinitesimal
small  errors perturbed on the state  grow to saturation
level at the time of the specific state, the state  is the cor-
 

Fig. 1. Mean growth of initial errors with different magnitudes
(log10 scale),  for  magnitudes  of  10–1,  10–2,  10–3,  10–4,  10–5,
10–6,  10–7,  and  10–8.  The  mean  error  growths  are  given  in
terms of natural logarithms (base e).
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responding  initial  state.  Considering  that  the  predictability
of  the  specific  state  is  estimated  by  repeating  a  backward
search  for  the  corresponding  initial  state,  the  technique  is
called BNLLE (Li et al., 2019).

x (tn) x (tn)
x (t1)

x (t2) x (tn)
tm

x (tn)
tn− tm

Figure  2 shows  the  simple  procedure  for  determining
the LBPL of the given state . The state  is a large
value of the climate variables in the time series data [ ,

, …, , …]. Based on the BNLLE method, the state
at time  is the corresponding initial state. Therefore, the pre-
diction lead time of state  can be quantitatively estim-
ated  ( ). Li  et  al.  (2020a) has  applied  the  BNLLE
method  to  compare  backward  predictabilities  of  warm and
cold events in the Lorenz63 model and found that the warm
events are more predictable.
 

3.    Results
 

3.1.    Scenario one: Only initial condition errors

x(t0) y(t0) z(t0)
x′ (t0) y′ (t0) z′ (t0)

δ

To investigate  the  effects  of  initial  condition errors  on
the local backward predictability of given states, the model
should be perfect.  If  ( , , )  is  a true state,  then
the  imperfect  initial  state  ( , , )  can  be
obtained by superimposing the initial  error  vector  on the
true state. 

x′ (t0) = x (t0)+δ1 , (3)
 

y′ (t0) = y (t0)+δ2 , (4)
 

z′ (t0) = z(t0)+δ3 , (5)
 

δ2 = δ
2
1+δ

2
2+δ

2
3 . (6)

δ1 δ2 δ3Here , , and  are small perturbations superimposed on
the three variables of Lorenz63 model. In this work, the num-
ber of random initial error vectors is 10 000 and their mag-
nitudes  are  both  10−5.  The  Lorenz  attractor  has  warm  and
cold  regimes,  and  regions  on  the  regime  transitions  are
dynamically  unstable  (Evans  et  al.,  2004).  Therefore,  we
chose an initial  state  (−0.46,  5.02,  30.90)  for  the  dynamic-
ally unstable region. From this initial state, another 1999 con-
secutive  states  on  the  same  trajectory  were  also  chosen.
Based on the BNLLE method, the LBPLs of 2000 consecut-
ive states were calculated.

√
β(r−1),

√
β(r−1),r−1

−
√
β(r−1),−

√
β(r−1),r−1

Figure 3 shows the spatial distribution of the LBPLs of
these consecutive states. The figure shows two unstable sta-
tionary  points,  ( )  and
( ),  located  at  the  center  of  the
two regimes (Mukougawa et al., 1991; Mu et al., 2002). On

 

x (tn)

tn

Fig. 2. Schematic of the algorithm used to estimate the LBPL
of  given  state .  The  vertical  axis  represents  climate
variables X,  and  the  horizontal  axis  represents  the  evolution
time  of X.  The  solid  curve  shows  the  variation  of  climate
variables X over  time.  The  red  diamond-shaped  star  is  the
given  state  at  time .  The  blue  star  represents  the
corresponding initial state at time tm that is being searched for.
The black solid points on the trajectory are intermediate states.

 

 

Fig. 3. Spatial distribution of LBPLs for 2,000 consecutive initial conditions
from the given state (−0.46, 5.02, 30.90) on the Lorenz attractor.
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every  individual  circular  orbit  around  the  unstable  station-
ary  points,  the  LBPLs  of  the  given  states  are  almost  the
same. For different circular orbits, the LBPLs are different.
Therefore,  the  LBPLs  of  given  states  present  obvious
layered structures, which is consistent with the results of Li
et  al.,  (2020b).  The  physical  reason  for  the  layered  struc-
tures may originate from the specific spatial structure of the
Lorenz attractor. The physical properties of each individual
circular  orbit  around  the  unstable  stationary  point  are  the
same. Therefore, each given state on the individual circular
orbit  has  almost  the  same  predictability.  Different  circular
orbits have different locations in phase space, leading to vary-
ing predictabilities (Nese, 1989; Trevisan and Legnani, 1995).

We also investigated the effects of the magnitude of ini-
tial condition errors on the LBPLs of given states. In order
to  make  the  conclusion  more  robust,  the  selected  states
should  have  different  dynamical  properties.  We  selected
two states [(−0.61, 2.66, 28.49) and (–3.87, –5.69, 18.00)],
the  former  of  which is  located in  the  dynamically  unstable
region, while the latter is located in the cold regime. Thus,
they represent different dynamical flows and have different
dynamical  properties.  The  LBPLs  of  the  two  given  states
(Fig. 4) reveal that the LBPLs decrease as the size of the ini-
tial condition errors increases. For different given states, ini-
tial  condition  errors  of  the  same  size  have  different  influ-
ences. When the magnitude of the initial condition errors is
10−7,  the  LBPLs  of  (−0.61,  2.66,  28.49)  is  15  time  units,
while  that  of  (−3.87,  −5.69,  18.00)  is  19  time  units.  For
other error magnitudes, the LBPLs are also different. This is
because  the  local  backward  predictabilities  depend  on  the
given  state  on  the  dynamical  trajectory.  The  two  given
states are on different locations of the dynamical flows, and
the  predictability  varies  with  location;  consequently,  the
LBPLs of the two given states are different, although the mag-
nitudes  of  the  initial  condition  errors  superposed  on  them
are the same. 

3.2.    Scenario two: Only model errors

For  the  scenario  of  model  errors  without  initial  errors,

the model is imperfect. Likewise, we perturbed three paramet-
ers with small perturbations in the Lorenz63 model. 

σ′ = σ+ε1 , (7)
 

b′ = b+ε2 , (8)
 

r′ = r+ε3 , (9)
 

ε2 = ε
2
1+ε

2
2+ε

2
3 . (10)

ε1 ε2 ε3Here , ,  and  are  small  perturbations  superim-
posed on the three parameters. The given states are the same
2000  consecutive  states  as  used  above.  Using  the  BNLLE
method, we can estimate the LBPLs of these states induced
by 10 000 random model errors with magnitude of 10−5.

Figure 5 shows the spatial distribution of LBPLs of the
2000  consecutive  states;  the  LBPLs  induced  by  model
errors also show layered structures similar to those induced
by initial condition errors.  It  is the specific structure of the
Lorenz  attractor  determines  the  specific  spatial  distribu-
tions  of  the  LBPLs.  Therefore,  the  above  results  indicate
that structure of the attractor has greater effects on predictabil-
ity  limits  and  their  distributions.  We  also  investigate  the
effects  of  model  error  magnitude  on  the  LBPLs  of  given
states.  The  situation  is  the  same  as  for  initial  condition
errors  (shown  in Fig.  6).  Increasing  the  model  error  mag-
nitude reduces the LBPLs of given states. The LBPLs of dif-
ferent given states are different, although the model error mag-
nitudes are the same. 

3.3.    Relative effects of initial condition and model errors

The  existence  of  initial  condition  and  model  errors
affects the predictability, which leads to an upper limit.  To
quantify  the  relative  effects  of  initial  condition  and  model
errors  on  the  local  backward  predictability  of  given  states,
we  compare  the  LBPLs  they  induce.  In  the  case  when  the
LBPLs of the given state induced by initial condition errors

 

 

Fig. 4. Variation of LBPLs for initial condition errors for given states (a) (−0.61, 2.66, 28.49) and (b) (–3.87, –5.69,
18.00). Error size is shown on a log10 scale.
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Fig. 5. Same as Fig. 3, but for the model error.

 

 

Fig. 6. Same as Fig. 4, but for the model error.

 

 

Fig.  7.  Variation of  LBPLs for  the  two types  of  errors  for  the  states  (a)  (−0.54,  1.88,  26.43)  and (b)  (–0.32,  1.27,
24.64). Error size is given on a log10 scale.
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are  higher  than  those  of  the  same  given  state  induced  by
model  errors,  this  indicates  that  model  errors  have a  larger
impact,  resulting  in  a  lower  local  predictability  limit,  and
vice  versa. Figure  7 shows  the  variation  of  the  LBPLs  of
two  given  states  with  the  magnitude  of  the  two  types  of
errors.  In Fig.  7a,  for  the  given  state  (−0.54,  1.88,  26.43)
and  an  error  magnitude  of  10–7,  the  LBPLs  induced  by
model  errors  are  slightly  higher  than  those  induced by ini-
tial  condition  errors.  This  demonstrates  that  initial  condi-
tion errors  have a  greater  influence on LBPLs,  resulting in
lower predictability.  When the error magnitude is  10–2,  the
LBPLs  induced  by  the  two  types  of  errors  are  roughly  the
same,  so  the  initial  condition  and  model  errors  have  the
same  effects  on  local  backward  predictability.  For  other
error  magnitudes,  the  LBPLs  induced  by  model  errors  are
lower, indicating model errors have more influence. There-
fore, when error magnitudes are different, the relative roles
of  initial  condition  and  model  errors  in  LBPLs  vary.  In
Fig.  7b,  when  the  error  magnitude  is  10–7,  the  LBPLs
induced  by  the  two  types  of  errors  are  both  15,  unlike  the
case for the given state (−0.54, 1.88, 26.43) in Fig. 7a. With
other  magnitudes,  the  situation  is  the  same,  with  the  relat-
ive  importance  of  the  two  types  of  errors  being  different
from those at  the first  given state.  The two previous initial
states were also analyzed (figures not  shown).  The conclu-
sion  is  similar  to  that  of  the  two  new  initial  states.  There-
fore, even though the same error magnitude may be superim-
posed,  if  the  given  states  are  different,  then  the  relative
effects  of  the  two  types  of  errors  are  different.  This  indic-
ates  that  the  relative  roles  of  initial  condition  and  model
errors depend on the position of the given states on the dynam-
ical trajectory in phase space.

To verify this conclusion, we selected more states to ana-
lyze. Considering that the previous 2000 consecutive states
originated  from the  dynamically  unstable  regions,  they  are

appropriate to use in the following analysis. Figure 8 shows
the LBPLs induced by the two types of errors and their differ-
ence  as  a  function  of  the  number  of  states  for  up  to  2000
states. Figure 8a shows that the LBPLs induced by initial con-
dition and model errors have the same tendencies independ-
ent  of  error  magnitude.  As  the  number  of  specified  states
increases,  the  LBPLs  first  increase  monotonically,  then
decrease  monotonically,  with  the  pattern  repeating  with
increasing  number  of  states.  In Fig.  8b,  when  the  mag-
nitudes  of  initial  condition  and  model  errors  are  both  10–2

(red solid and dashed lines), the differences between model
error  and  initial  error  of  LBPLs  are  positive  for  the  first
1339  given  states,  so  model  errors  play  a  greater  part  in
local backward predictability than initial condition errors, res-
ulting in lower LBPLs. The differences are negative for the
remaining  661  states,  for  which  the  initial  condition  errors
have  a  greater  influence  on  local  backward  predictability.
Thus,  the  relative  effect  of  initial  condition  and  model
errors varies with the specified state. Figure 8b also shows
that  the  differences  between  the  LBPLs  of  the  same  given
states are different when the error magnitudes are different.
This demonstrates that the error magnitude affects the relat-
ive effects of initial condition and model errors on local back-
ward predictability.

Figure 9 shows the spatial distributions of LBPLs of pre-
vious  2000  consecutive  states  induced  by  the  two types  of
errors and their differences. On an individual circular orbit,
the LBPLs of given states are roughly the same, whereas the
LBPLs of  given states  on the  regime transitions  are  differ-
ent.  From  the  warm  (cold)  regime  to  the  cold  (warm)
regime,  the  properties  of  states  change,  resulting  in  differ-
ent predictabilities in the regime transition region. When the
error  magnitude  is  10–2,  the  LBPLs  of  the  1336  states
induced by initial  condition errors  are  higher  than those of
the  remaining  states  induced  by  model  errors.  For  most  of

 

 

Fig.  8.  (a)  LBPLs  of  2,000  consecutive  states  induced  by  initial  and  model  errors  with  different  magnitudes.  (b)
Difference  (initial  condition  errors  minus  model  errors)  of  LBPLs  induced  by  initial  and  model  errors  of  these
consecutive states  with different  magnitudes.  The solid and dashed lines in (a)  represent  LBPLs induced by initial
condition and model errors, respectively. The red, green, and blue solid or dashed lines refer to error magnitudes of
10–2, 10–5, and 10–7, respectively (as shown by log10 values –2, –5, and –7). The black dashed line in (b) is the zero
value.
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these  1336 states,  the  differences  in  the  predictabilities  are
only slightly larger than zero, with just a small minority hav-
ing larger values of up to nearly 3 time units. The large val-
ues in the local predictability difference of states are mainly
distributed on the inner trajectories of the left regime. When
the  magnitude  of  errors  is  10–5,  the  large  values  of  differ-
ence are  spread all  over  the attractor.  When the magnitude
of errors is 10–7, the large differences are found on the inner
trajectories  of  both  regimes.  Therefore,  the  inner  trajector-
ies  of  left  regime  are  frequent  regions  where  the  model
errors have a larger impact on local backward predictability.
But  on  other  regions  of  the  attractor,  the  initial  condition
errors play a more important role in local backward predictab-
ility.  This also demonstrates that  the relative effects  of ini-
tial  condition  and  model  errors  vary  with  the  spatial  loca-
tions of given states in phase space. From the spatial distribu-
tions,  for  the  same  given  state  with  different  error  mag-
nitudes, the difference between the LBPLs is not the same.
This further demonstrates that the relative effects depend on
the error magnitudes.
 

4.    Conclusions and discussion

Initial condition and model errors are two main contribut-
ors to the loss of atmospheric predictability. Based on these
sources  of  errors, Lorenz  (1975) classified  the  predictabil-
ity into two types: the first associated with initial condition
errors and the second driven by model errors. Initial condi-
tion  errors  are  unavoidable  in  observations,  while  model
errors  are  due  to  imperfect  knowledge  of  atmospheric
motions,  coarse  resolution,  numerical  schemes  and  so  on
(e.g. Vannitsem and Toth, 2002). It is essential to investig-
ate which type of error has the larger impact on predictabil-
ity, so that operational forecast skills may then be improved
significantly  by  attempting  to  reduce  that  error.  This  issue
has  been  studied  intensely  but  no  consensus  has  been
reached. There have also been fewer studies aimed at the pre-
dictability limits of specific weather events and the relative
roles of the two types of errors in their predictability.

The general public and policymakers are more focused
on  how  long  in  advance  specific,  high-impact  weather
events  can  be  forecasted  compared  with  normal  weather
events.  Moreover,  considering  the  rare  occurrence  of  spe-

 

 

Fig.  9.  Spatial  distributions of  LBPLs projected on the X–Z plane of  the Lorenz attractor  with initial  condition and model
error magnitudes of (a–c) 10−2, (d–f) 10−5, and (g–i) 10−7. The left panels only have initial condition errors in the system, the
middle panels only have model errors, and the right panels show the differences between the LBPLs (initial condition errors
minus model errors)induced by initial condition and model errors.

SEPTEMBER 2021 LI ET AL. 1493

 

  



cific weather events, their predictabilities are unique and dif-
fer from those of normal weather events and current predictab-
ility methods fail  to estimate their  prediction lead time. To
investigate  the  predictability  of  specific  states, Li  et  al.
(2019) proposed the BNLLE method to quantitatively estim-
ate  the  LBPLs (maximum prediction lead time)  of  specific
states.

In  this  work,  based  on  the  BNLLE  method,  we  per-
formed a theoretical study with the Lorenz model to investig-
ate the relative effects of initial condition and model errors
on the LBPLs of given states.  For both types of errors,  the
LBPLs  of  given  states  present  obvious  layered  structures.
That is, the LBPLs of given states are roughly the same on
an individual circular orbit, and are different on different cir-
cular orbits. A possible explanation of this result is that the
physical  properties  of  states  on  an  individual  circular  orbit
are the same, resulting in the same LBPLs. As local predictab-
ility varies with location in phase space, the LBPLs are differ-
ent  on  different  circular  orbits.  We  also  find  that  the  local
backward  predictability  depends  on  the  error  magnitude.
For  a  given  state,  the  LBPLs  vary  with  the  superimposed
error magnitude. The LBPLs decrease as the magnitudes of
the initial condition or model errors increase. The same mag-
nitude of initial condition or model errors may result in differ-
ent LBPLs of different given states.

Next, we compared the relative effects of initial condi-
tion  and  model  errors  on  the  local  backward  predictability
of consecutive states. In the case that the difference between
the LBPLs induced by initial condition and model errors is
positive, our results indicate that model errors have a larger
influence  on  local  backward  predictability,  resulting  in
lower  LBPLs,  and  vice  versa.  We  chose  2000  consecutive
states  on  the  Lorenz  attractor  and  calculated  their  LBPLs.
On  the  whole,  the  differences  are  not  always  positive  or
always  negative,  indicating  that  the  relative  roles  of  initial
condition  and  model  errors  in  LBPLs  vary  from  state  to
state on the dynamical trajectory. With a magnitude of 10–2,
the larger differences are mainly located on the inner traject-
ory of the left regime. With a magnitude of 10–5, the larger
differences  are  spread  all  over  the  attractor.  With  a  mag-
nitude  of  10–7,  the  larger  differences  are  distributed  on the
inner orbits of both regimes.  Therefore,  the inner trajector-
ies  of  left  regime  are  frequent  regions  where  the  model
errors have a larger impact on local backward predictability.
From  the  spatial  distribution  of  LBPLs,  it  further  demon-
strates  the  importance  of  error  magnitudes  in  the  relative
effects of initial condition and model errors on the local back-
ward predictability.

From  the  results,  the  impacts  of  model  errors  are  not
always  larger  or  smaller  than  those  of  initial  condition
errors.  This is because different dynamical regions are loc-
ated on the Lorenz attractor. Some regions are more sensit-
ive to the model errors.  In these regions, model errors per-
turbed on the states grow more rapidly, resulting in larger con-
tributions  to  the  loss  of  predictability.  For  different  mag-
nitudes of errors,  model errors always have impacts on the

inner trajectories of left  regime, indicating its sensitivity to
model errors. Equally, some dynamical regions are more sens-
itive  to  the  initial  condition  errors,  resulting  in  larger
impacts  on  the  predictability.  Therefore,  the  results  inform
us  that  numerical  weather  and  climate  prediction  models
may improve prediction skills  by determining the sensitive
regions  and  reducing  the  corresponding  errors. Lorenz
(1963) pointed out that the chaotic systems were sensitive to
the initial conditions. Slight differences between the two adja-
cent  initial  conditions  will  grow  rapidly  over  time.  There-
fore, forecast errors in operational forecast are dependent on
the  initial  conditions.  However,  the  initial  condition  is  not
the  only  factor  to  influence  the  growth  of  forecast  errors.
The  model  errors,  numerical  schemes  and  some  other
sources will also influence the growth of forecast errors. In
this work, we studied the impacts of model errors on the fore-
cast  error  growth in  the  absence of  initial  condition errors.
The findings indicate that for some cases, the model errors
play  a  more  important  role  in  the  forecast  error  growth.
Under  such  circumstances,  the  effects  of  model  errors  on
the saturation value or the limit cannot be ignored.

Although  numerical  models  are  widely  used  in  the
study  of  predictability,  theoretical  predictability  methods
are still necessary. The predictability limits estimated by the-
oretical  predictability  methods  are  complementary  to  those
estimated  by  numerical  models.  Some  research  has  suc-
ceeded in applying theoretical predictability methods to estim-
ate the potential predictability limits of the real atmosphere
based on observational data (e.g. Ding et al., 2010, 2015; Li
and  Ding,  2011).  In  the  present  work,  we  applied  the
BNLLE method using a  simple theoretical  model.  It  is  our
view that it is first necessary to further examine the perform-
ance of  the  new method BNLLE.  Only if  the  BNLLE per-
forms well in the simple mode, will we have confidence to
apply it to more sophisticated models. In addition, this study
sheds  light  on  the  relative  contributions  of  two  types  of
errors on local predictability of specific states, which is also
beneficial to estimating the predictability of extreme events
in  more  sophisticated  models.  Therefore,  it  is  important  to
carry  on  this  work.  Nevertheless,  the  BNLLE  method
applied to estimating the local backward predictability of spe-
cific states in the Lorenz model is a preliminary attempt. In
the future, we will apply the BNLLE method to estimate the
LBPLs  of  extreme  weather  events  in  the  real  atmosphere,
which may provide guidance to modelers.
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