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ABSTRACT

Initial condition and model errors both contribute to the loss of atmospheric predictability. However, it remains
debatable which type of error has the larger impact on the prediction lead time of specific states. In this study, we perform a
theoretical study to investigate the relative effects of initial condition and model errors on local prediction lead time of
given states in the Lorenz model. Using the backward nonlinear local Lyapunov exponent method, the prediction lead time,
also called local backward predictability limit (LBPL), of given states induced by the two types of errors can be
quantitatively estimated. Results show that the structure of the Lorenz attractor leads to a layered distribution of LBPLs of
states. On an individual circular orbit, the LBPLs are roughly the same, whereas they are different on different orbits. The
spatial distributions of LBPLs show that the relative effects of initial condition and model errors on local backward
predictability depend on the locations of given states on the dynamical trajectory and the error magnitudes. When the error
magnitude is fixed, the differences between the LBPLs vary with the locations of given states. The larger differences are
mainly located on the inner trajectories of regimes. When the error magnitudes are different, the dissimilarities in LBPLs

are diverse for the same given state.
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Article Highlights:

* This study introduces a new method to quantify predictabilities of LBPL of specific states with the presence of initial

condition or model errors.

* The specific structure of the Lorenz attractor leads to a layered distribution of local backward predictability limits

induced by the initial condition or model errors.

* The relative impacts of initial condition and model errors on local backward predictability depend on the locations of

given states on the dynamical trajectory and the error magnitudes.

1. Introduction the accuracy of forecast results: initial condition errors and
model errors. The initial condition errors are the difference

In weather forecasting, two main types of errors affect

between the true and observed values of atmospheric vari-
ables. They are unavoidable, no matter how advanced the
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used to forecast future states. However, the simplified atmo-
spheric equations, coarse resolution and parameterization
schemes introduce model errors in numerical weather predic-
tion. Apart from the initial condition and model errors, the
numerical schemes which solve the numerical models will
also introduce uncertainty, resulting in loss of predictability
(e.g. Gilson et al., 1988; Li et al., 2000; Berner et al., 2009).
Lorenz (1963) pointed out that the chaotic nature of the atmo-
sphere would make slightly differing initial states evolve
very differently in phase space over time. Given that the
two types of errors can be never eliminated, the atmo-
spheric predictability has an upper limit. Lorenz (1975) classi-
fied the problems of atmospheric predictability into two cat-
egories. The first predictability is associated with the initial
condition errors, while the second predictability is related to
the model errors. Researchers have also proposed several
methods to quantitatively estimate atmospheric predictabil-
ity. Early studies attempted to estimate the predictability
limit by computing the doubling time of small errors (Leith,
1965; Mintz, 1968; Smagorinsky, 1969). Charney (1966) sum-
marized previous studies and demonstrated that the average
doubling time of small errors is 5 days. The Lyapunov expo-
nent (LE) can characterize the average growth rate of
chaotic systems, and may be used to quantify atmospheric pre-
dictability. However, the LE is almost constant on the
attractor (Oseledec, 1968) while predictability is a local prop-
erty in phase space (Trevisan and Legnani, 1995). There-
fore, the LE is not suitable for measuring local predictabil-
ity. Subsequently, the local LE was proposed to quantify
atmospheric predictability (Nese, 1989; Yoden and
Nomura, 1993). The local LE method is valid only if the ini-
tial error is infinitesimal. Hence, Ding and Li (2007) and
Ding et al. (2008) proposed the nonlinear local Lyapunov
exponent (NLLE) method to study the nonlinear growth of
finite error size in a time interval. Without linearizing the gov-
erning equations, they integrated the true state and per-
turbed state to study the error growth. Therefore, the NLLE
method remains applicable even when the initial error
grows to a finite size. As an alternative to the NLLE
method, Mu et al. (2003) proposed the conditional nonlin-
ear optimal perturbation (CNOP) method to study atmo-
spheric predictability. The CNOP method takes into account
the nonlinearity of the atmosphere and can also be used
when the initial error grows to a finite size (Mu and Duan,
2003; Duan et al., 2004; Mu and Zhang, 2006; Duan and
Mu, 2009). The shadowing property reflects the approxim-
ate evolution of a computed trajectory compared to the true
one (Sanz-Serna and Larsson, 1993; Vallejo and Sanjudn,
2013). Therefore, the shadowing time can indicate the predict-
ability. Based on the distributions of finite-time LEs, the shad-
owing time can be calculated. That is, the predictability may
be quantified. Recently, Vallejo and Sanjuin (2015) intro-
duced the predictability index to indicate the predictability.
The predictability index is also derived from the distribu-
tions of finite-time LEs. Since the finite-time LEs are com-
puted by using the tangent linear equations (Yoden and
Nomura, 1993; Ding and Li, 2007), the two methods above
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are different from the NLLE method. More recently, Daza
etal. (2016) has proposed basin entropy to quantify the uncer-
tainties in dynamical systems. Basin entropy has proven to
be an effective method for study of the mechanism of loss
of predictability in several paradigmatic models. It is essen-
tial to introduce this method into the predictability of
extreme weather events in the future.

These methods allow us to estimate the prediction time
within which weather forecasts are credible. However, the
general public and policymakers are often more concerned
with the prediction lead time of specific weather events
such as extreme heat waves or heavy rainfall that can cause
socioeconomic damage. The predictability of extreme
weather events is different from that of normal weather
events. To distinguish the predictability of specific weather
events from that of normal weather events, Li et al. (2019)
proposed two new notions of predictability: the local for-
ward and local backward predictabilities. The local forward
predictability is associated with the prediction time of nor-
mal weather events, while the local backward predictability
is concerned with the maximum prediction lead time of
extreme weather events. In current operational forecasts,
owing to some uncertainties present in the observations and
models, forecasts in the first few days are sufficiently accur-
ate to inform the public well. Questions arise as to whether
the accurate forecast time can be extended, and how to
determine the upper predictability limit from initial normal
events, but these questions are unsolved. Though two weeks
are widely recognized as the upper limit, this problem still
needs more intensive examination. In order to address this
problem, Li et al. (2019) introduced the notion of local for-
ward predictability to study the upper predictability limit
from initial normal states. Since extreme weather events
occur at a low frequency, their predictabilities are unique
and differ from those of normal weather events (Mu et al.,
2002; Chou, 2011). It is more difficult to estimate the predict-
ability of extreme weather events. In order to estimate the pre-
dictability of extreme weather events, Li et al. (2019) indic-
ated that the growing forecast errors resulting in such events
should be analyzed, and proposed the notion of local back-
ward predictability to study these kinds of events. Hence,
the forward and backward predictabilities are focused on dif-
ferent kinds of weather events. Li et al. (2020b) studied the
relative roles of initial condition and model errors in local for-
ward predictability in the Lorenz model and found that the ini-
tial condition errors are more dominant in the forward predict-
ability than model errors, consistent with previous studies
(e.g. Downton and Bell, 1988; Lorenz, 1989; Richardson,
1998). The complexity of the predictability of specific
weather events has meant that there are very few relevant stud-
ies on the relative roles of the two types of errors in local
backward predictability. The occurrence of specific states,
especially extreme states, has a greater impact on human soci-
ety, so it is necessary to study the relative effects of the two
types of errors on the local backward predictability of spe-
cific states, which may provide theoretical guidance for
improving forecast skill. Ding and Li (2007) introduced the
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NLLE method to quantify the maximum prediction time
from a random initial state. However, this technique can’t
quantify how much time a specific state can be predicted in
advance. In order to address this problem, Li et al. (2019)
developed the backward nonlinear local Lyapunov expo-
nent (BNLLE) method on the basis of the NLLE technique.
By calculating the time of forecast errors growing to satura-
tion level from the corresponding initial state to the specific
state, the local predictability of the specific state can be quan-
tified. Therefore, the NLLE and BNLLE techniques have dif-
ferent research objects. The NLLE method has been widely
used in the atmospheric predictability or related fields (e.g.,
Li and Ding, 2013; He et al., 2021). However, since the
BNLLE method was introduced, it has just been applied to a
single study comparing the predictabilities of warm and
cold events (Li et al., 2020a). In the present work, we will per-
form a theoretical study to investigate the relative effects of
initial condition and model errors on the local backward pre-
dictability of specific states based on the BNLLE method.
The BNLLE method is used to quantify the local backward
predictability limit (LBPL) of a specific state. Therefore, the
relative effects of initial condition and model errors on local
backward predictability can be quantitatively estimated by
comparing the difference between the LBPLs. The
remainder of this paper is organized as follows. Section 2
introduces the BNLLE method and Lorenz model. The res-
ults of quantitative comparisons of the relative effects of ini-
tial condition and model errors on local backward predictabil-
ity are presented in section 3. Finally, a discussion and conclu-
sions are given in section 4.

2. Model and method

2.1. Model description

In this work, the Lorenz model (1963, hereafter
referred to as Lorenz63 model) is used to investigate the relat-
ive impacts of two types of uncertainties on local backward
predictability. The Lorenz63 model is a conceptual model
of the real atmosphere and has been widely used in studies
of atmospheric predictability (e.g. Palmer, 1993; Evans et
al., 2004; He et al., 2006, 2008; Feng et al., 2014; Li et al.,
2020a). The detailed description of model setup parallels
that of Li et al. (2020b).

2.2. BNLLE method

Ding and Li (2007) proposed the NLLE method to quant-
itatively estimate atmospheric predictability. Figure 1 shows
the mean local relative error growth of initial errors as a func-
tion of time for different error magnitudes in the Lorenz63
model. The initial errors grow with a regularly oscillating pat-
tern at the early stage. After that, the errors reach a satura-
tion level and cease to grow. For different magnitudes of ini-
tial error, the time to reach saturation is different. Smaller ini-
tial errors take more time to reach saturation. Before the satur-
ation stage, the errors grow in the linear regime. When the
errors are in the period of saturation, the nonlinearity domin-
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ates the error growth (e.g. Lacarra and Talagrand, 1988; Far-
rell, 1990; Lorenz, 2005). Therefore, the local forward predict-
ability limit of a single state in phase space can be meas-
ured as the time when the forecast error exceeds 95% of the
saturation value (Li et al., 2019).

Using the NLLE algorithm, we can obtain the local for-
ward predictability limit of any initial state. However, we can-
not estimate the LBPL of a given state, especially for the
extreme states that are of greater interest. On the basis of the
NLLE algorithm, Li et al. (2019) introduced an algorithm,
BNLLE, for estimating the LBPL of a given state. In an n-
dimensional system, the growth of small errors 6(#) per-
turbed on the initial state x (#p) can be expressed by

0 (to +7) = (x(1),6(10),7) 6 (t0) , M

where 5(x(ty),0(fy),7) is the nonlinear error propagator,
and the 6 (tp+7) is the time-dependent error at time 7y +7.
The average growth rate of errors, also called the NLLE
(Ding and Li, 2007) can be described by

1. l6G0 + Dl

Ax(),6(t0), 1) = —In ool 2
where A(x(#p),6(ty),7) represents the average growth rate
of errors. Therefore, the average growth of forecast errors
varying with time can be obtained (shown in Fig. 1). Based
on the saturation time of forecast errors, we can estimate the
local forward predictability limit of state x(zp). Li et al.
(2019) pointed out that a specific state has a corresponding
initial state. In order to estimate the LBPL of a specific
state, the corresponding initial state must be found first.
Once the corresponding initial state is determined, then the
time length between the corresponding initial state and spe-
cific state is defined as the LBPL of the specific state. Li et
al. (2019, 2020a) indicated that if numerous infinitesimal
small errors perturbed on the state x (7)) grow to saturation
level at the time of the specific state, the state x () is the cor-
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responding initial state. Considering that the predictability
of the specific state is estimated by repeating a backward
search for the corresponding initial state, the technique is
called BNLLE (Li et al., 2019).

Figure 2 shows the simple procedure for determining
the LBPL of the given state x (#,). The state x(z,) is a large
value of the climate variables in the time series data [x (#1),
x(t), ..., x(t,), ...]. Based on the BNLLE method, the state
attime t,, is the corresponding initial state. Therefore, the pre-
diction lead time of state x(#,) can be quantitatively estim-
ated (7, —1t,). Li et al. (2020a) has applied the BNLLE
method to compare backward predictabilities of warm and
cold events in the Lorenz63 model and found that the warm
events are more predictable.

X
4
Backward search Trajectory
>
Im In Time

Fig. 2. Schematic of the algorithm used to estimate the LBPL
of given state x(s,). The vertical axis represents climate
variables X, and the horizontal axis represents the evolution
time of X. The solid curve shows the variation of climate
variables X over time. The red diamond-shaped star is the
given state at time #,. The blue star represents the
corresponding initial state at time ¢,, that is being searched for.
The black solid points on the trajectory are intermediate states.
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3. Results

3.1. Scenario one: Only initial condition errors

To investigate the effects of initial condition errors on
the local backward predictability of given states, the model
should be perfect. If (x(zy), y(#y), z(#y)) is a true state, then
the imperfect initial state (x’(fy), y’ (ty), z’(tp)) can be
obtained by superimposing the initial error vector § on the
true state.

x'(to) = x(1p) + 6 , 3)
Y (1) =y(to) + 62, “4)
' (to) = z(ty) + 63, (%)
62 =6, +62+62. 6)

Here 6}, 8>, and 63 are small perturbations superimposed on
the three variables of Lorenz63 model. In this work, the num-
ber of random initial error vectors is 10 000 and their mag-
nitudes are both 1075, The Lorenz attractor has warm and
cold regimes, and regions on the regime transitions are
dynamically unstable (Evans et al., 2004). Therefore, we
chose an initial state (-0.46, 5.02, 30.90) for the dynamic-
ally unstable region. From this initial state, another 1999 con-
secutive states on the same trajectory were also chosen.
Based on the BNLLE method, the LBPLs of 2000 consecut-
ive states were calculated.

Figure 3 shows the spatial distribution of the LBPLs of
these consecutive states. The figure shows two unstable sta-
tionary points, (WB(r=1), \JBr=1),r=1) and
(= yB(r=1),—jB(r—1),r=1), located at the center of the
two regimes (Mukougawa et al., 1991; Mu et al., 2002). On
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Fig. 3. Spatial distribution of LBPLs for 2,000 consecutive initial conditions
from the given state (—0.46, 5.02, 30.90) on the Lorenz attractor.
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every individual circular orbit around the unstable station-
ary points, the LBPLs of the given states are almost the
same. For different circular orbits, the LBPLs are different.
Therefore, the LBPLs of given states present obvious
layered structures, which is consistent with the results of Li
et al., (2020b). The physical reason for the layered struc-
tures may originate from the specific spatial structure of the
Lorenz attractor. The physical properties of each individual
circular orbit around the unstable stationary point are the
same. Therefore, each given state on the individual circular
orbit has almost the same predictability. Different circular
orbits have different locations in phase space, leading to vary-
ing predictabilities (Nese, 1989; Trevisan and Legnani, 1995).

We also investigated the effects of the magnitude of ini-
tial condition errors on the LBPLs of given states. In order
to make the conclusion more robust, the selected states
should have different dynamical properties. We selected
two states [(—0.61, 2.66, 28.49) and (-3.87, -5.69, 18.00)],
the former of which is located in the dynamically unstable
region, while the latter is located in the cold regime. Thus,
they represent different dynamical flows and have different
dynamical properties. The LBPLs of the two given states
(Fig. 4) reveal that the LBPLs decrease as the size of the ini-
tial condition errors increases. For different given states, ini-
tial condition errors of the same size have different influ-
ences. When the magnitude of the initial condition errors is
10-7, the LBPLs of (-0.61, 2.66, 28.49) is 15 time units,
while that of (-3.87, —5.69, 18.00) is 19 time units. For
other error magnitudes, the LBPLs are also different. This is
because the local backward predictabilities depend on the
given state on the dynamical trajectory. The two given
states are on different locations of the dynamical flows, and
the predictability varies with location; consequently, the
LBPLs of the two given states are different, although the mag-
nitudes of the initial condition errors superposed on them
are the same.

3.2. Scenario two: Only model errors

For the scenario of model errors without initial errors,
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the model is imperfect. Likewise, we perturbed three paramet-
ers with small perturbations in the Lorenz63 model.

o =c+eg, @)
b=b+e, )
¥ =r+e&s, )

82=8f+8§+£§. (10)

Here &), &, and &; are small perturbations superim-
posed on the three parameters. The given states are the same
2000 consecutive states as used above. Using the BNLLE
method, we can estimate the LBPLs of these states induced
by 10 000 random model errors with magnitude of 10-5.

Figure 5 shows the spatial distribution of LBPLs of the
2000 consecutive states; the LBPLs induced by model
errors also show layered structures similar to those induced
by initial condition errors. It is the specific structure of the
Lorenz attractor determines the specific spatial distribu-
tions of the LBPLs. Therefore, the above results indicate
that structure of the attractor has greater effects on predictabil-
ity limits and their distributions. We also investigate the
effects of model error magnitude on the LBPLs of given
states. The situation is the same as for initial condition
errors (shown in Fig. 6). Increasing the model error mag-
nitude reduces the LBPLs of given states. The LBPLs of dif-
ferent given states are different, although the model error mag-
nitudes are the same.

3.3. Relative effects of initial condition and model errors

The existence of initial condition and model errors
affects the predictability, which leads to an upper limit. To
quantify the relative effects of initial condition and model
errors on the local backward predictability of given states,
we compare the LBPLs they induce. In the case when the
LBPLs of the given state induced by initial condition errors
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Fig. 4. Variation of LBPLs for initial condition errors for given states (a) (—0.61, 2.66, 28.49) and (b) (-3.87, -5.69,

18.00). Error size is shown on a log scale.
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are higher than those of the same given state induced by
model errors, this indicates that model errors have a larger
impact, resulting in a lower local predictability limit, and
vice versa. Figure 7 shows the variation of the LBPLs of
two given states with the magnitude of the two types of
errors. In Fig. 7a, for the given state (-0.54, 1.88, 26.43)
and an error magnitude of 107, the LBPLs induced by
model errors are slightly higher than those induced by ini-
tial condition errors. This demonstrates that initial condi-
tion errors have a greater influence on LBPLs, resulting in
lower predictability. When the error magnitude is 102, the
LBPLs induced by the two types of errors are roughly the
same, so the initial condition and model errors have the
same effects on local backward predictability. For other
error magnitudes, the LBPLs induced by model errors are
lower, indicating model errors have more influence. There-
fore, when error magnitudes are different, the relative roles
of initial condition and model errors in LBPLs vary. In
Fig. 7b, when the error magnitude is 107, the LBPLs
induced by the two types of errors are both 15, unlike the
case for the given state (-0.54, 1.88, 26.43) in Fig. 7a. With
other magnitudes, the situation is the same, with the relat-
ive importance of the two types of errors being different
from those at the first given state. The two previous initial
states were also analyzed (figures not shown). The conclu-
sion is similar to that of the two new initial states. There-
fore, even though the same error magnitude may be superim-
posed, if the given states are different, then the relative
effects of the two types of errors are different. This indic-
ates that the relative roles of initial condition and model
errors depend on the position of the given states on the dynam-
ical trajectory in phase space.

To verify this conclusion, we selected more states to ana-
lyze. Considering that the previous 2000 consecutive states
originated from the dynamically unstable regions, they are
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appropriate to use in the following analysis. Figure 8 shows
the LBPLs induced by the two types of errors and their differ-
ence as a function of the number of states for up to 2000
states. Figure 8a shows that the LBPLs induced by initial con-
dition and model errors have the same tendencies independ-
ent of error magnitude. As the number of specified states
increases, the LBPLs first increase monotonically, then
decrease monotonically, with the pattern repeating with
increasing number of states. In Fig. 8b, when the mag-
nitudes of initial condition and model errors are both 102
(red solid and dashed lines), the differences between model
error and initial error of LBPLs are positive for the first
1339 given states, so model errors play a greater part in
local backward predictability than initial condition errors, res-
ulting in lower LBPLs. The differences are negative for the
remaining 661 states, for which the initial condition errors
have a greater influence on local backward predictability.
Thus, the relative effect of initial condition and model
errors varies with the specified state. Figure 8b also shows
that the differences between the LBPLs of the same given
states are different when the error magnitudes are different.
This demonstrates that the error magnitude affects the relat-
ive effects of initial condition and model errors on local back-
ward predictability.

Figure 9 shows the spatial distributions of LBPLs of pre-
vious 2000 consecutive states induced by the two types of
errors and their differences. On an individual circular orbit,
the LBPLs of given states are roughly the same, whereas the
LBPLs of given states on the regime transitions are differ-
ent. From the warm (cold) regime to the cold (warm)
regime, the properties of states change, resulting in differ-
ent predictabilities in the regime transition region. When the
error magnitude is 102, the LBPLs of the 1336 states
induced by initial condition errors are higher than those of
the remaining states induced by model errors. For most of

3
T b) —102
Ko} 105
Bal — 1071
s
S 1}
E
[ =
o
&1t
o

-2 s . .

0 500 1000 1500 2000

Number of consecutive states

Fig. 8. (a) LBPLs of 2,000 consecutive states induced by initial and model errors with different magnitudes. (b)
Difference (initial condition errors minus model errors) of LBPLs induced by initial and model errors of these
consecutive states with different magnitudes. The solid and dashed lines in (a) represent LBPLs induced by initial
condition and model errors, respectively. The red, green, and blue solid or dashed lines refer to error magnitudes of
1072, 1075, and 107, respectively (as shown by log;q values —2, -5, and —7). The black dashed line in (b) is the zero

value.
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Fig. 9. Spatial distributions of LBPLs projected on the X-Z plane of the Lorenz attractor with initial condition and model
error magnitudes of (a—c) 102, (d—f) 105, and (g—i) 10~7. The left panels only have initial condition errors in the system, the
middle panels only have model errors, and the right panels show the differences between the LBPLs (initial condition errors
minus model errors)induced by initial condition and model errors.

these 1336 states, the differences in the predictabilities are
only slightly larger than zero, with just a small minority hav-
ing larger values of up to nearly 3 time units. The large val-
ues in the local predictability difference of states are mainly
distributed on the inner trajectories of the left regime. When
the magnitude of errors is 1075, the large values of differ-
ence are spread all over the attractor. When the magnitude
of errors is 107, the large differences are found on the inner
trajectories of both regimes. Therefore, the inner trajector-
ies of left regime are frequent regions where the model
errors have a larger impact on local backward predictability.
But on other regions of the attractor, the initial condition
errors play a more important role in local backward predictab-
ility. This also demonstrates that the relative effects of ini-
tial condition and model errors vary with the spatial loca-
tions of given states in phase space. From the spatial distribu-
tions, for the same given state with different error mag-
nitudes, the difference between the LBPLs is not the same.
This further demonstrates that the relative effects depend on
the error magnitudes.

4. Conclusions and discussion

Initial condition and model errors are two main contribut-
ors to the loss of atmospheric predictability. Based on these
sources of errors, Lorenz (1975) classified the predictabil-
ity into two types: the first associated with initial condition
errors and the second driven by model errors. Initial condi-
tion errors are unavoidable in observations, while model
errors are due to imperfect knowledge of atmospheric
motions, coarse resolution, numerical schemes and so on
(e.g. Vannitsem and Toth, 2002). It is essential to investig-
ate which type of error has the larger impact on predictabil-
ity, so that operational forecast skills may then be improved
significantly by attempting to reduce that error. This issue
has been studied intensely but no consensus has been
reached. There have also been fewer studies aimed at the pre-
dictability limits of specific weather events and the relative
roles of the two types of errors in their predictability.

The general public and policymakers are more focused
on how long in advance specific, high-impact weather
events can be forecasted compared with normal weather
events. Moreover, considering the rare occurrence of spe-
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cific weather events, their predictabilities are unique and dif-
fer from those of normal weather events and current predictab-
ility methods fail to estimate their prediction lead time. To
investigate the predictability of specific states, Li et al.
(2019) proposed the BNLLE method to quantitatively estim-
ate the LBPLs (maximum prediction lead time) of specific
states.

In this work, based on the BNLLE method, we per-
formed a theoretical study with the Lorenz model to investig-
ate the relative effects of initial condition and model errors
on the LBPLs of given states. For both types of errors, the
LBPLs of given states present obvious layered structures.
That is, the LBPLs of given states are roughly the same on
an individual circular orbit, and are different on different cir-
cular orbits. A possible explanation of this result is that the
physical properties of states on an individual circular orbit
are the same, resulting in the same LBPLs. As local predictab-
ility varies with location in phase space, the LBPLs are differ-
ent on different circular orbits. We also find that the local
backward predictability depends on the error magnitude.
For a given state, the LBPLs vary with the superimposed
error magnitude. The LBPLs decrease as the magnitudes of
the initial condition or model errors increase. The same mag-
nitude of initial condition or model errors may result in differ-
ent LBPLs of different given states.

Next, we compared the relative effects of initial condi-
tion and model errors on the local backward predictability
of consecutive states. In the case that the difference between
the LBPLs induced by initial condition and model errors is
positive, our results indicate that model errors have a larger
influence on local backward predictability, resulting in
lower LBPLs, and vice versa. We chose 2000 consecutive
states on the Lorenz attractor and calculated their LBPLs.
On the whole, the differences are not always positive or
always negative, indicating that the relative roles of initial
condition and model errors in LBPLs vary from state to
state on the dynamical trajectory. With a magnitude of 10-2,
the larger differences are mainly located on the inner traject-
ory of the left regime. With a magnitude of 1075, the larger
differences are spread all over the attractor. With a mag-
nitude of 107, the larger differences are distributed on the
inner orbits of both regimes. Therefore, the inner trajector-
ies of left regime are frequent regions where the model
errors have a larger impact on local backward predictability.
From the spatial distribution of LBPLs, it further demon-
strates the importance of error magnitudes in the relative
effects of initial condition and model errors on the local back-
ward predictability.

From the results, the impacts of model errors are not
always larger or smaller than those of initial condition
errors. This is because different dynamical regions are loc-
ated on the Lorenz attractor. Some regions are more sensit-
ive to the model errors. In these regions, model errors per-
turbed on the states grow more rapidly, resulting in larger con-
tributions to the loss of predictability. For different mag-
nitudes of errors, model errors always have impacts on the
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inner trajectories of left regime, indicating its sensitivity to
model errors. Equally, some dynamical regions are more sens-
itive to the initial condition errors, resulting in larger
impacts on the predictability. Therefore, the results inform
us that numerical weather and climate prediction models
may improve prediction skills by determining the sensitive
regions and reducing the corresponding errors. Lorenz
(1963) pointed out that the chaotic systems were sensitive to
the initial conditions. Slight differences between the two adja-
cent initial conditions will grow rapidly over time. There-
fore, forecast errors in operational forecast are dependent on
the initial conditions. However, the initial condition is not
the only factor to influence the growth of forecast errors.
The model errors, numerical schemes and some other
sources will also influence the growth of forecast errors. In
this work, we studied the impacts of model errors on the fore-
cast error growth in the absence of initial condition errors.
The findings indicate that for some cases, the model errors
play a more important role in the forecast error growth.
Under such circumstances, the effects of model errors on
the saturation value or the limit cannot be ignored.

Although numerical models are widely used in the
study of predictability, theoretical predictability methods
are still necessary. The predictability limits estimated by the-
oretical predictability methods are complementary to those
estimated by numerical models. Some research has suc-
ceeded in applying theoretical predictability methods to estim-
ate the potential predictability limits of the real atmosphere
based on observational data (e.g. Ding et al., 2010, 2015; Li
and Ding, 2011). In the present work, we applied the
BNLLE method using a simple theoretical model. It is our
view that it is first necessary to further examine the perform-
ance of the new method BNLLE. Only if the BNLLE per-
forms well in the simple mode, will we have confidence to
apply it to more sophisticated models. In addition, this study
sheds light on the relative contributions of two types of
errors on local predictability of specific states, which is also
beneficial to estimating the predictability of extreme events
in more sophisticated models. Therefore, it is important to
carry on this work. Nevertheless, the BNLLE method
applied to estimating the local backward predictability of spe-
cific states in the Lorenz model is a preliminary attempt. In
the future, we will apply the BNLLE method to estimate the
LBPLs of extreme weather events in the real atmosphere,
which may provide guidance to modelers.
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